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ABSTRACTS

Section I. The Mechanism of Various Types of High Rate Electrodes

The effect of purification on the behavior of the model porous
electrode was studied. The currents observed in the pure system are
about an order of magnitude higher than under impure conditions, and
much more reproducible. The apparent activation effect observed in
impure solutions is due to removal of impurities.

‘ Linear current potentisl behavior (quasi-ohmic) is observed in
the pure system as predicted previously. Most of the current is produced

at the edge of the meniscus.

ii



Section II. The Mechanism of Electrocatalysis

The work on the catalytic activity of simple electrode reactions
(H2/H’" ; Fe+3/Fe+2) has been continued and extended to include alloys
of non-noble with noble metals (Ni-Pd; Hi-Pt) and alloys of non-noble
metals (Fe-Ni). Data on the hydrogen evolution reaction on a series
of Pa-Ni alloys are given and briefly discussed. The &lloys employed
in this work were not anodically pulsed and thus the data reflect the

true characteristic of the alloy composition.

iii



Section III. The Electric Double Layer at the

Solid-Solution Interface

The potential of zero charge V 2 and its variation with pH have

pze
been measured on Pt. szc decreases linearly with increasing pH with
& slope of dvpzc/de = 2.3 RT/F, vhen measured on the normal hydrogen
scale. It is independent of pH on the reversible hydrogen scale and
has a value of 0.565 + 0.025 V.

Hydrogen was very carefully eliminated from the electrodes and
it was shown that the pH dependence is independent of the existence of
adsorbed hydrogen, while the value of szc at any pH depends strongly
on it.

iv



Section IV, Adsorption in the Double Layer with

Special Reference to Thermal Effects

During the reporting period & new coworker was trained in the
radiotracer technique of adsorption measurements, and scme of the
previous measurements of adsorption of benzene on Pt were reproduced.
Preparations were made to initiate studies of adsorption by electro-

chemical methods.



Section V. Electrode Kinetic Aspects of Electrochemical

Energy Conversion

Equations were derived for the terminal cell potential, differ-
ential resistance, efficiency and power of an electrochemical energy
converter as a function of current drewn from the cell. To simplify
the treatment, the anode and cathode were assumed to be smooth planar
electrodes. Numerical calculations of these relations were carried out
verying the exchange current densities, limiting current densities of
the two electrodes and the ohmic resistance of the cell to examine
their effects on the nature of these relations. The results are
presented graphically. A brief summaxy of the analysis of some models

which could improve electrode performance is given.

vi



I. THE MECHANISM OF VARIOUS TYPES OF HIGH RATE ELECTRODES

In the period reported the effect of purification on the behavior
of the model porous electrode was studied. A special purification train
for gases as well as arrangements for extensive cleaning of the cell and
purification of electrolyte by pre-electrolysis were built.

The results obtained under those pure conditions with a slit
~) 5 mm wide, in the bottom, and top position of the meniscus are
shown in Fig. 1.

In Table I, the results are compared with those obtained prev-
iously under non-purified conditionms.

From the above comparison the following conclusions may be
drawm:

1. ‘'Activation' of the Pt electrode is purely due to the
removal of impurities by oxidation and/ or desorption, sinee in the
purified system currents are ~* 10 times higher, extremely well repro-
ducible and no hysteresis, or so-called 'activation' is observed.

2. Linear current-potential behavior observed at bottom
position connected thus almost entirely with free meniscus (only
~ 0,5 cm2 of electrode is in contact with solution) agrees with the
previously predicted ohmic behavior. The deviations from linearity
observed below 0.25 V are ascribed to the diffusion and convection at
the immersed 0.5 cm2 of Pt.

3. Curve (2) obtained for the top position of the electrode
consists of the free meniscus current and of diffusion and convection

1imiting currents or the additional 7 cm® of the electrode. By



TABIE I

Non-purified System Purified System
Value of current
at 0.2V ~ 0.35 mA 1.05 mA
at 1V #.20.8 mA 3.2 mA
(top position)
Reproducibility + 50 - 100% +1-2%
Activation If electrode exposed to Non existent asbove 1%

potentials above ~J600 mV
higher currents (up to
L400%), slowly decaying,

in time to 'non-activate!
values.

i-V relation in
steady state
bottom position

Quasi linear up to 0.15 V Almost perfectly
linear over entire
range (up to 1 V)

i-V relgtion top

No conclusions possible Closely linear. Devi-
in comparison of top and ations caused by con-
bottom, owing to very tribution of additional
poor reproducibility, 5 cm® of immersed elec-

Currents in position of trode, i.e. diffusion
top and bottom are often and convection currents.
inverted giving less

current for top position.

subtracting (curve 1) from curve (2) the value of this limiting current

is obtained (curve 3). It is interesting to note that 7 cm® of Pt

produces less than 1/2 of the current produced by the meniscus edge

alone.,

Further work will concern the current-potential relation of a




reaction with much lower exchange current than hydrogen ionization on
Pt, in order to determine the effect of activation control on the model

porous electrode system.
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ITI THE MECHANISM OF ELECTROCATALYSIS

1. Introduction

The work on the catalytic activity of simple electrode reactinns,
thet of the Hy/H* and Fe>*/Fe®*, has been continued and extended to
include other metals and alloys as electrode materials. For the purpose,
alloys of non-noble with noble metals, Ni-Pd and Ni-Pt, and of non-
noble non-noble metals, Fe-Ni, were made in this laboratory. Data on
the HZ/H+ reaction one series of PA-Ni alloys are given and briefly

discussed.

2. Alloy Preparation

PAd-Ni and Pt-Ni alloys are difficult to obtain commercially
in desired compositions, and were made in our laboratory. Procedure of
the preparation was as follows. Weighed amount of metals (platinum,
palladium and nickel) were placed in a zirconia crucible and melted in
an induction furnace under purified argon atmosphere. To remove oxygen,
argon was passed through a glass tube containing copper turnings and
heated at 400°C. Melting lasted for a few minutes. To insure complete
mixing of alloy components, an ingot after cooling to rpom temperature,
was turned over and remelted. This procedure helped to achieve a
nacrohomogenous alloy. To remove coring and residual macrohomogeneity,
after remelting in the induction furnace sh alloy was annealed at
about 1200°C for about one week. For this annealing, the alloy was
placed on an alumina crucible inside a quartz tube, evacuated to 10'6

mm/Hg and sealed. Zirconium metal foils were placed inside the tube



and served as a getter for the residual oxygen. The quartz tube was
placed inside a furnace with controlled temperature. The alloy after
annealing was examined for homogeneity under an optical microscope. No
indications of inhomogeneity were observed.

Initially, it was intended to work such an ingot into a wire.
However, these alloys appeared to be hard and unsuitable for cold
swaging.% Due to this difficulty, it was decided to mount these alloy
ingots into an extended Teflon mould (Fig. 1). One side of the Teflon
mould was machined to fit a true bore glass tube and to provide elec-
trical contact. The other side was mechanically polished with emery
paper (Wo. L/0) and occasionally with gamal polishing solution. By
the above procedure, nine alloys were made altogether. They were
3 (Pt-Ni), 3 (Pd-Ni) and 3 (Fe~Ni) alloys.

Alloy electrodes moulded in Teflon were washed with boiling
CClu, with acetone, and then rinsed with oconductivity water. They were
then treated with conc. HQSO,+ for about 30 secs. and washed thoroughly
with conductivity water. Finelly, they were placed in the cell and
washed again with redistilled conductivity water.

From the above three alloy series, experiments have been
carried out on the Pd-Ni alloys only. Further, to complete a previous
analysis of Pt-Pd system,l one more &lloy composition of Pt-Pd was
examined. The experimental procedure was already described in a previous

report. 2

*Some Pd-Ni alloy was made into wires by alternative heating and swaging.



3. Experimental Results

The potential-log current density dependence was obtained in
1N H2SOh acid solution only in the cathodic region. Owing to the
possible preferential dissolution of the less noble alloy component,
the anodic side has not yet been examined. The exchange current density
for the Pd-Ni alloy series veries nearly linearly with the atomic com-
position of the amlloys (Fig. 2). The exchange current densities of the
end members differ for more than two decades.

During this reporting pericd, further analysis of Pt-Pd system
was made. It was reported previously,l that the mechanism of the H"'/H2
reaction on this alloy series changes at a given alloy composition. In
order to narrow the gap in the composition raenge over which the mechanism
change occurs, one more alloy of intermediate composition was studied.
In Figure 3. the 'b! parameter of Tafel relationship is plotted versus
the atomic alloy composition. From this figure, it is seen that the

reaction mechanism sbruptly changes at about 70 at % of Pd.

4, Brief Discussion of the Results

Pd-Ni alloy series was previously examined for the same reac-
tion in acid solution.3 Contrary to the present experiments, it was
found that activity of the electrode expressed as the exchange current
density remains practically unchanged and close to that of pure Pd for
most of the Pd-Ni alloys. Only the Ni electrode hed & distinctly different
activity from the rest of the alloys. The apparent inconsistency of

these results with the present experimental data can be accounted Br in



the following way. If an alloy electrode is subject to an anodic pulse
for the purpose of ‘activation', the less noble metal dissolves prefer-
entially and the more noble component crystallizes over the electrode
surface. In the experiments reported in the literature, Pd-Ni alloys
were subject to prolonged (200 sec.) anodic pulses with a high current
density (4o mA/cm?). During such a pulse the alloy most likely becomes
covered to an appreciable extent with Pd crystals. The activity for
the Hf/H2 reaction is much higher on Pd than that on pure Ni electrode.
Thus higher activity results on Pd-Ni elloys. Consequently, an irregular
change of activity with alloy composition was observed.

In the present experiment, the alloys were not anodically
pulsed, and the data obtained reflects a true characteristic of the

alloy composition.
5. Future Work

Activity for Fe2+/Fe3+ reaction will be examined on Pt-Ni,
Pd-Ni, Pt-Mo and Pt-V alloys, and for H'/H, on Pt-Ni, Pt-Mo, Pt-V
alloys. With the completion of the study of the above systems, the work
will be extended to include compounds such as borides, nitrides and
carbides of Ti. Intermetallic compounds (such as MnAl6) will be

studied later.

REFERENCES
1. NASA Semi-annual Progress Report, dated 1 Oct. 1964 to 30.June.1965.
2. NASA Semi-annual Progress Reprot, dated 31 Oct. 1963 to 31 March 196L.

3. Hoare, J. P. and Schuldiner, S., J. Phys. Chem., 62, 229 (1958).




LEGENDS TO FIGURES

Fig. 1 ~ Cross-section of Teflon holder with the alloy sample and fitted

glass tube.

Fig. 2 - Change of the activity for H2 reduction om Ni-Pd alloy electrodes

inlN stou solution.

Fig. 3 - Plot of Tafel slopes versus at. % of alloy for H2 reduction

on Pt-Pd alloy series.
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III. THE ELECTRIC DOUBLE LAYER AT THE SOLID-SOLUTION INTERFACE

1. Introduction

In the report period an examination of the. pH-dependence of
the potential of zero charge of platinum has been made by using the diff-
erential capacitance method. In addition, the adsorption-ionic strength
variation method, previously used for the determination of potential of
zero charge was further confirmed using existing experimental adsorption

data on mercury.

2. Experimental

The apparatus used is described in the previous :r'eport.l In
the preparation of the electrodes 0.2 mm diameter wire was sealed into
a glass tubing by means of a Housekeeper seal. This thinner tubing was
joined to a long (~ 3 f£t.) *true-bore' tubing. The platinum was of
spectroscopically pure quality. The thin platinum wire was surrounded by
fused glass wall.(1/2 mm - 1 mm diameter). The rest of the wire was
melted in H2-02 flame into & fine spherical ball touching the glass
capillary. The bead and the glass tubing were cleaned in }11\103 - HoS0y
(1 : 3) mixture, washed in distilled and double distilled water success-
ively. The bead was introduced in & 'Vycor'! furnace which was made to
fit on top of the cell. The bead was heated in an argon atmosphere
(99.9975% pure further purified by passing over Cu filing heated to 400°C
and subsequently over molecular sieves cooled down to - 78°C) for ebout

1 hour. All the moisture from the glass was driven off. Then hydrogen
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(purified by passing through heated Ag-Pd alloy tube) was passed at a
small and steady rate for 5 minutes to remove the surface oxides. Argon
was passed agein for a pericd of 2 - 3 hours at an elevated temperature of
450°C. The furnace and the electrode were cooled down in the argon
atmosphere. Few drops of mercury were put in the tubing in order to

meke electrical contact with the bead by means of a coaxial cable.

The solutions were purified very carefully. The reagents used
were of 'analyzed reagent'! grade. The double-distilled water was
redistilled under a nitrogen atmosphere. ('Prepurified nitrogen' was
passed over heated copper filings, silica gel and three traps cooled
down to - 78°C. One of the traps was empty and the other two filled with
activated charcoal which was reactivated quite often heating at 400 - 450°C
under a steady stream of pure argon.) The required amounts of the
reagents, perchloric acid, sodium hydroxide and sodium perchlorate were
added from respective stock solutions. The total ionic strength was
kept constant. The sclutions were pre-electrolyzed for a minimum of 72
hours with the help of very large platinized platinum electrode (150
cm2 geometrical area) and another smaller electrode. The pre-electrolysis
was carried out at Ml)LA/cmz current density. The volume of the solution
pre-electrolyzed at one time was ~~500 ml.

Cleaning of the glassware was done as follows. The cells were
filled with warm nitric acid: sulfuric acid (1 : 3) mixture and were
kept overnight. Subsequently they were washed with distilled water and
double distilled water. The glassware was steamed and finally filled
with distilled double-distilled water under N, atmosphere and were kept

filled up to the time of experiment.
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3. Results and Discussion

It has been reported2 in the literature that the potentisl of

{ zero charge of platinum varies with pH, because the amount of hydrogen
absorbed and/or adsorbed changed with pH. It is known that the work
function of platinum changes with sbsorption of hydrogen.3 This in itself
is one effect which will change the potential of zero charge. Therefo?e,
it seemed necessary to investigate whether the potential of zero charge
of platinum devoid of hydrogen varied with pH. The electrodes were pre-
pered in a cautious manner to eliminate hydrogen dissolved in the elec-
trode. The electrode was heated in argon for 1 hour and in hydrogen for
5 - 7 minutes at 350°C. The temperatu:;e was then raised to 450°C and
the electrode was heated in an argon atmosphere for three hours. In this
way any hydrogen which may have permeated into the bulk of the electrode
was eliminated. The electrode in the solution was kept at a potential
_>_ 450 mV R.H.E. So that coverage by atomic hydrogen was maintained at
& negligible level and hydrogen absorption in the metal could not occur.
The solutions were highly purified and were saturated with nitrogen. The
electrode potential was changed in 25 mV steps between 400 mV and 650 mV.
If the potential of the electrode was not made anodic to + 650 mV (R.H.E.)
and cathodic to + 40O m¥ (R.H.E.) no hysteresis of capacitance was
observed. If the electrode was taken to, say, + 200 n¥ (R.H.E.) and
then the capacitance values measured as a function of potential, usually
the capacitance increased and the potential of zero charge determined

as the minimum of capacitance, shifted decidedly to a more. mpegative

potential, e.g., see Figures 1 and 3. Figures 1 to 7 represent the
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capacitance-potential plots for the pH values of 2.5, 2.8, 3.3, k.1,
8.0, 10.3 and 11.2 respectively. The potential refers to the reversible
hydrogen electrode. The scale is purposely chosen to show that on this
scale the potential of zero charge of platinum remains fairly constant.
Fig. 8 shows capacitance potential plot at two frequencies. Increasing
the frequency from 1000 to 2000 c¢/sec. affects the absolute values of the
cepacity in the neighborhood of the potential of zero charge but does
not alter the position of the minimum on the potential scale. Table 1
shows the potential of zero charge on the reversible hydrogen scale and
the normal hydrogen scale as & function of pH for electrodes from which
hydrogen has been carefully eliminated. Fig. 9 shows the pH dependence
of potentiel of zero charge on the normal hydrogen scale. It is a straight
line having a slope of about 2.3 RI/F.* This is in good agreement with
the assumption of Bockris, Wroblowa and Piersmei..)+ Also, a recent study
on adsorption of benzene on platinum as & function of pH, showed that
the adsorption maximum also shifts with pH in a similar fashion.5 Bockris,
Wroblowe and Piersma have given & possible explanation of this type of
behavior. According to these authors specific adsorption of hydroxyl
ions, obeying a logarithmic adsorption isotherm gives the 60 mV shift
of potential of zero charge per pH unit.

Fig. 10 shows the adsorption of phenol on mercury as & function

of potential at various ionic strengths while keeping the concentration

*The P.z.c, values obtained previously by the adsorption method at pH 3
and 12 are given here for comparison. While the absolute values obtained
in this menner are somewhat higher, the average variation of the poten-
tial of zero charge with pH is essentially the sanme.
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of phenol constant at lO’3 M. The data was taken from Blomgren, Bockris
and Jesch.6 The intersection of the three curves is seen to be within
20 uV of each other. The individual potentials of zero charge of Hg in
the respective solutions, as measured by the electrocapillary method,
are showm by vertical arrows. The intersection of adsorption curves for
0.1 N HC1 and 0.03 N HC1 is at - 235 oV (N.H.E.). The potential of zero
charge of Hg in 0.03 N HC1l determined by the electrocapillary method

is - 0.21 v (N.H.E.) and that for 0.1 N HC1 is - 0.2k v (N,H.E.). Simi-
larly, the intersection of 0.1 N HC1l curves and 1 N HCl is at - 0.260 v
(W,H.E.). The potentiasl of zero charge of Hg for the 1 N HC1 is

- 0.300 v (N,H,E.). Comsiderable specific adsorption is involved in
this case but even then the adsorption method proposed by Dahms. and
GreeﬂTfor the determination of potential of zero charge gives fairly
good values of the potential of zero charge. This is the first direct
verification of this method. Table 2 shows the potentials of zero

charge by the two methods.

4, Future work

Work is in progress for the measurement of the potential of zero
charge of gold, After this work, silver and nickel will be studied in
all details.

For the next method, the apperatus will be built, so as to be
eble to measure the coefficients of friction as a function of potential

for the various systems so far studied.
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TABLE 1
POTENTIIAL OF ZERO CHARGE OF PLATINUM ON REVERSIBLE HYDROGEN

AND NORMAL HYDROGEN SCALES AS A FUNCTION OF pH

pH P.,Z2.C. on P.Z.C. on
reversible hydrogen scale normal hydrogen scale
2.5 + 620 + 470
2.8 + 575 + Lo7
3.3 + 560 + 362
L.1 + 575 + 329
8.0 + 550 + 75
10.3 + 525 - 93
11.2 + 550 - 122
TABLE 2

P.Z.C.'s OF Hg AS OBTAINED BY DAHMS AND GREEN METHOD AND BY THE

ELECTROCAPILLARY METHOD (cf. FIG, 13)

Intersection of P.Z.C. Concen- P.Z.C. (electrocapillary)
(N.H,E,) ‘tration (N.H.E,)

1 N and 0.1 N curves - 0,260V 1N - 0.300 V

0.1 N and 0.03N curves - 0.230V 0.1 N - 0.24h0 vV

0.03 N - 0.210V
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CAPTIONS TO FIGURES

Fig. 1:

Fig. 2:

Fig. 3:

Fig. L:

Fig. 5:

Capacitance in M F om 2 (gecmetric) plotted as a function of
potential (R.H.E.) in mV in an HC1O, solution of pH = 2.5 on
platinum. The curve in triangles is for an electrode which was
kept at + 200 for a few minutes and therefore, with hydrogen.
The curve in squares is for platinum without hydrogen.

Capacitance in }Lch'z (geometric) plotted as a function of
potential (R.H.E.) in mV in an HC1Oj solution of pH = 2.8 on
platinum,

Capacitance in UF c:m'2 (geometric) plotted as a function of
potential (R.H,E,) in mV in an NaCl0O), solution of pH = 4.1, on
platinum. Cireles are for going anodic in potential and crosses
are that for going cathodic in potential , filled circles for
platinum with hydrogen.

Cepacitance in WF em™2 plotted as a function of potential
(R,H.E,) in oV on platinum in a 2.8 x 103 M sodium perchlorate
solution adjusted to pH = L.1.

Capacitance in uF cm-2 plotted as a function of potential
(R,H.E.) in oV on platinum in & 3 x 10-3 M sodium perchlorate
solution adjusted to pH = 8.



Fig. 6:

Fig. T:

Fig. 8:

Fig. 9:

Fig.10;
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Capacitance in u F cn™2 plotted as a function of potential
(R.H.,E,) in nV 'on platinum in a 2.9 x 10-3 M sodium perchlorate
solution of pH = 10.2. Curve in circles is for platinum
without hydrogen and the one in dots is for platinum with
hydrogen.

Capacitance in MEF cm™2 as a function of potential (R.H.E.) mV
on platinum in ‘a 2 x 10~3 M sodium perchlorate solution of

PH = 11.2. The lower curves, crosses (going cathodic) and
circles (going anodic) are for platinum without hydrogen. The
upper curve in circles is for platinum with hydrogen.

Capacitance in i F cn™? versus potential (R.H.E,) in_mV on
platinum as a function of frequency solution 3 x 10-3 M sodium
pexchlorate pH = 8. Triangles: 2000 cps. Circles: 1000 cps.

Potential of zero charge of platinum as determined from the
minimum of capescitance as a function of pH.

Plot of surface concentration of phenol on mercury foom a bulk
concentration of 10-3 M, varying the hydrochloric acid concen-
tration circles 0.1 N HCl, crosses 0.03 N HCl and squares for

1 N HCl.
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IV ADSORPTION IN THE DOUBLE LAYER WITH SPECTAL REFERENCE

TO THERMAL EFFECTS

This project involves the study of adsorption on a number of
solid electrodes (e.g., Pt, Ni, Ag) and on mercury. Specifically the
adsorption of hydrogen, oxygen and, e.g., hydrozine will be tested.

For studies of adsorption on mercury the electrocepillary methed will
be used. For adsorption on solids & radiotracer method developed in

this laboratory will be used. This method involves measurement of the
radiation penetrating through a thin metal foil placed over the end of
an end-window proportional counter. The metal foil serves as the test
electrode and is placed in an electrolytic cell which contains suitable
counter and reference electrodes and a radiocactively tagged adsorbate.

During the reporting period a new coworker was trained in the
use of the adsorption apparatus, and previous results on the adsorption
of benzene on platinum were reproduced.

In the next reporting periocd measurements of adsorption will be
made by the radiotracer method and critically compared with several
electrochemical methods used in other laboratories for the measurement

of adsorption on solid electrodes.
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V THEORETICAL INVESTIGATION

ELECTRODE KINETIC ASPECTS OF ELECTROCHEMICAL ENERGY CONVERSION

1. Introduction

Essentially, three types of electrochemical devices may be
considered. They are the fuel cell, the driven cell and the secondary
battery. The similarities and differences of the three devices are
presented in Teble I.

Considerable overvoltage losses exist in nearly all working
fuel cells. These losses may be broadly classified under activation,
mass transfer and ohmic polarization, which are the central topics in
tne fieia of electrochemical energy conversion. The following sections
deal with
(1) equations for the terminal cell potential, differentiel resistance,
efficiency and power as a function of current drawn from a fuel cell;
(i1) the results of calculations carried out to examine the effect of
different degrees of activation, mass trensfer and ohmic polarization
on the sbove relations; (iii) & brief summary of the analysis of some

proposed models which mey improve electrode performance.

2. Important electrode kinetic relations for an electrochemical energy

converter

The terminal cell potential-current relation for a cell is

I RT 1

1 RT
—) - ln +—%
cln,e” T Xof T Baloa

- +.=1n (1 -
X ¢ Acls,e MF A

r:Lj
NS
|2
3

RT I
+,2%= 1n (1 - =) - IR._] (1)
n¥ AaiL,a 1
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where Er is the thermodynamic reversible potential of the cell and is

given by

By = ®r,c 7 ®r,a (2)

i o? iL, and o, with the eppropriste suffices, are the exchange current
density, limiting current density and the transfer coefficient of the
anodic or cathodic reaction: ‘rl is the number of electrons transferred
from the cathode to the anode externally, during one act of the overall
reaction in the cell; and A, and A, are the active areas of the anode

and cathode respectively.

The differential resistance of a cell is defined by

e 8T  _RT RT - . RT
dI = Me T T o(JFI of oFL ‘?E\ACLL,C-I)

AT iy o D) (3)

The efficiency of energy conversion (£ ,) is given by

F
Eo - 25 ()

By substituting for E from equation (1) in (4), the efficiency-current
relation is obtained. It is clear that the efficiency varies with
current in the same way as does the terminal cell potential.

The power of an electrochemical energy converter is defined

by the equation
P = EI (5)
Using equation (1) for E in equation (5), the power-current releation
for a cell is obtained.
From this general P-I relation, it is not possible to obtein

snalytic expressions for the maximum power and for the current density
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and terminal cell potential at this maximum power level. However, such

expressions may be obtained in some limiting cases.

Case (i) Conditions under which E-I relation is linear.

For this case, the terminsl cell potential may be given by

E = Er - Rtf:;‘ (6)
RT[ 1 1 1 1 1 1
where R =—-—(——+-—-——)+—(-:———+’-—-)+R. (7)
t
WTF Ac io,c iL,c Aa lo,a iL,a} i

Rt is the effective internal resistance of the cell.
Using (6) in (5)
P = I(E, - R.I) (8)

The rondition for maximum power is

dP/dI = E_ - 2R,I =0 (9)

I = Er/th (10)

P, = E,°/UR, (11)

and E, = Er/2 (12)

Case (ii) Conditions under which the current-potential relation at
each electrode is Tafellian.
Mess transfer and chmic polarization are assumed to be neg-

ligible. Under these conditions the power-current relation is given by

P=1I[E, - (s +8y) - (b +1bp) logT ] (13)
where
_ BT . -
® = S0F 18 Ak, b = (14)
_ _RT . _ T
8 = o gF in Aa]'o,a, by = A F (15)
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For this case, the maximum power current density and terminal

cell potential .when the power is e maximum are given by

Ep - (8 + Bp) - (by + b2))

P = (bl + b2) exp ( T ¥ T, (16)
E,. - ( ) - (b, +1b,)
log Im = — é% ++a$ 1" % (17)
17 P2
E, = (b +b,) (18)

3. Numerical calculations showing dependence of above electrode

kinetic relation on the various parameters.

Calculations have been carried out to show the dependence
of the above relations on the parameters such as the exchange current
densities, limiting current densities and the internal resistance of
the cell. The combination of parameters, used in the calculatinns, are
given in Table II and the resulting dependences of terminal cell
potential, differential resistance, efficiency and power to the current
are presented graphically in Fig. 1 - 4 respectively. Fig. 1.1 shows
the effect of variation of Ail keeping AiL and Ri constant for two
extreme values of R;. It is seen that there is initially a marked
decrease in E and thereafter the E-I relation is linear until the
limiting current, if the product Ai_ is fairly high () 10™2 amp).

6

If Aio is low even for one of the electrodes (f; 107" amp), E decreases

significantly over the whole range. In Fig. 1.2, the effect of
variation of AiL, while Aio and Ri are constent, is shown. The range

of current is reduced by a decade for a reduction of i_. by a factor

L
of 10. Otherwise, the shape of the curve is constant. Fig. 1.3 shows
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the marked effect of the internal resistance of the cell on the linear
E-I region while mainteining Aio end AiL constant. This figure shows
the great importance of reducing the internal resittance of the cell. '
At the same time, it is also necessary to increase the exchange current
densities as is seen from lines VI and VII in Fig. 1.1. The effect of |
activation overpotential on the differential resistance (d.E/dI) - |
current plot (Fig. 2.1-2.3) is quite significant at low currents,
whereas concentration overpotential markedly affects this plot at
currents close to the limiting current. In the central region, dE/dI
is nearly constant which represents the ohmic resistance.

The efficiency-current plots (Fig. 3.1-3.3) are similar to
the terminal Cell-potenti&l PLOLS (Fig. i.1-1.3). IThe eilivieuvy is
a maximum when I = O and decreases monotonously with increasing I.

The power is plotted as a function of curremt in Fig. L.1-4.3.
At any perticular value of I, the power is significantly increased
with increase of Aio. P is also increased by decreasing R;. In most
of the cases calculated, except when the internal resistance of the
cell is high or when Aio even for one of the electrodes is low, the
maximum power is close to the limiting current. When the terminal cell
potential-current relation is linear, the power-current plot is parabolic

as expected from equation (8).

*
L, Summary of other work presented in paper:

Some models of electrode design-spaghetti tube model, jet

*Deta.ils of the theoretical analysis are in the paper which will
appear in the Oct. or Nov. issue of the Journal of Electroanalytical
Chemistry.
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electrode, porous electrode for increasing the apparent current
density (end thereby reduce efficiency and power losses) were dealt
with theoretically. It was concluded the.t\ the spaghetti tube model
compares favorably with the best available porous electrodes and that

the jet electrode model is most suitable for liquid hydrocarbons.



TABLE I

BASIC SIMILARITIES AND DISSIMILARITIES AMONG THE THREE

ELECTROCHEMICAL DEVICES

Driven Cell

Fuel Cell

Secondary Battery

Cathode is negative,
anode is positive

Reaction forced by
externsl power source

The driving cell is
vacit, inexplieit. No
load. The thermody-
namic potential is
not important.

Accpts electricity
and produces sub-
stance.

In vrinciple, can
operute ad infinitum.

Cen be regarded in
terms of single
alectrodes.

The current which is
forced through creates
the nolarizetion;
current determined
outside the cell.

Tais causes certain
2olarization.

Cithode is positive
anode is negative

Reaction spontaneous

The load is tacit, inex-

plicit. The thermodynamic
potential is the central

point.

Accepts substances and
produces electricity.

In principle, can oper-
ate ad infinitum.

Cannot be regarded in
terms of single elec-
trodes.

The potential drop at the
electrode-solution inter-
face is modified by the
passege of current as a
kind of feed-back. Cur-
rent determined (partly)
inside cell. Stimulated
by E, - E,? .

Cathode is positivyg
anode is negative

Reaction spontaneons
during discharge

The load is tacit, in.«-

plicit. The thermodyaric
potential is the zertrel

point.

Accepts electricity Auring
charging, givesou*
electricity during ¢ s-
charging.

Intrinsically limit=rl
to store certain amou:h
of energy.

Cannol be regarded i
terms of single eiec
trodes.

The potential crop al <che
electrode-solution inter-
face is modified vy th=
passage of current ax a
kind of feed-beci.

C —— e —— —
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KINETIC PARAMETERS USED IN THEORETICAL ANALYSIS OF PERFORMANCE

OF ELECTROCHEMICAL REACTOR

g:ti‘;; Aai,:"o »8 Ac io »C AaiL 28 Aoty sC =% a X c Ry
number  amps amps amps amps ohms
I 1073 1072 1 1 /2 1/2 1

II 1073 1073 1 1 /2 1/2 1

III >1 1073 1 1 © 1/2 0.1
v 1073 1073 1 1 12 1/2 0.1
v ST 1073 1 1 ® 1/2 0.01
VI 1073 1073 1 1 /e 1/2  0.0L
VII >1 1073 1 1 ® /2 o.01
viiIz 1073 107 1 1 /2 1/2 1

X 1073 107 1 1 /2 if2  o.
X >1 1070 1 1 @ 1/2 0.1
XI > 1 1073 0.1 0.1 o 1/2 0.01
XII >1 1076 0.1 0.1 @ 1/2 1
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CAPTIONS TO FIGURES

Terminal cell potential-current plots (vide Table III for assumed
kinetic parameters).
1.1 Effect of Ai  on E-I curves at constant values of AiL and Ry
Solid lines - Ry = 1 ohm.
Dashed lines - Ry = 0.0l ohm.
1.2 Effect of Aij on E-I curves at constant values of Aij and R,.

1.3 Effect of Ri on E-I curves at constant values of Aio and AiL.
Differential resistance-current plots.
Division into sub group 2.1-2.3 as in Figure 1.

Efficiency-current plots.

Division into sub group as in preceding figures.

Pover-current plots.

Division into sub group as in preceding plots.
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